Abstract -- A vertical garden also known as green wall or living wall is self sufficient vertical garden attached to exterior or interior walls of a building. They differ from green facades (ivy walls) as green walls have growing media supported on the face of the wall, while green facades have soil only at the base of the wall and support climbing plants on the face of the wall to create the green, or vegetated, facade. The plants receive water and nutrients from within the vertical support instead of from the ground. Vertical garden was invented by Stanley Hart White who patented a green wall system in the late 1930s. In vertical gardens, various types of modular panels can be used along with geo-textile fabrics, growing media, irrigation systems, and plants. Living walls are particularly suitable for cities, as they allow good use of available vertical surface areas. The living wall could also function for urban agriculture, urban gardening, or for its beauty as art. Green walls may be indoors or outside, freestanding or attached to an existing wall, and come in a great variety of sizes.

Keywords: living wall, Hanging gardens, Green building element, Urban architecture, Advance agriculture, benefits and uses.

I. INTRODUCTION
ONE of the gardening world's hottest trends, "vertical gardens" allows plants to grow on walls and other non-horizontal surfaces. They're especially popular for small-space gardening where ground is at a premium, or as decoration for patios and outdoor rooms. Putting plants at eye-level also gives new appreciation to groundcovers, succulents and small perennials that usually take stooping to admire up close.

Creating a vertical garden can be problematic. Some of the problems encountered are:
1. Getting a messy soil to stay in place when the planter is turned 90 degrees.
2. Watering and rooting problems.

Growing plants on a vertical surface has been possible after the studies of natural vertical locations – places without soil where in nature there may be great abundant of plant species. The technique imitates these locations, so it also functions without soil, having the benefits of making the surface very light and easy to tailor any geometry.

Design of Vertical Garden or Live Wall: Each vertical garden is given a unique design and selection of species. The composition of plants takes in consideration the specific environment where it will be built, such as the local and micro climate, sun exposure and the surrounding context. The aim is to create a one of a kind and site-specific garden that stands beautiful through all the seasons of the year.

A well executed design is also a way to minimize the future maintenance demand of the garden. A plant's growth habit, size and behavior on a vertical surface is important knowledge for making the right combination of species, in order to keep the competition between plants at a healthy level. Choosing the right plant for the right place makes sense for any garden, but maybe even more so in a vertical garden.

For the overall design a lot of inspiration is taken from natural shapes and environments where these types of plants have their origin, and in the smaller scale each species is given a context where it can develop its characteristics. All together a unique garden is creating with much content, surprise and variation. A vertical garden can be installed in almost any location and as a living material; the potential of integrating plants in our urban environments is interesting. Places never thought of as possible could be inhabited by plants, like subway stations or other intensely frequented places where horizontal space is difficult to spare.

II. SUPPORTING STRUCTURE
The supporting structure consists of a 10 mm PVC-board mounted on a stud work. The solid PVC board is sealed at joints, and an air gap between the board and the wall behind assure a double protection against moisture. On top of the board, a multi-layered, synthetic and highly absorbent felt surface is attached. It gives an even distribution of water over the surface and provides mechanical support for the plants as they grow attached to the felt. A cut is made in the outer felt layer and the plants inserted in between. As a soilless surface, the construction is very light – less than 25 kg/m² including plants. Depending of what species that are used, the average surface depth is increased with 200-500 mm.
III. IRRIGATION

The irrigation system is designed to minimize water consumption. It consists of an automation-unit with equipment for control of nutrient injection and irrigation cycles. When a surface has a variation of sun exposures, the irrigation is divided into segments in order to program it specifically for each part. Within the multi-layered felt surface a drip-tube is integrated. Water consumption varies with heat and sun exposure, but compared to normal green spaces or a lawn, the consumption is normally lower. It averages between 2-5 l/m²/day.

Figure 1. Supporting structure of vertical garden

Figure 2: Irrigation system of vertical garden.
IV. LIGHT
Direct sunlight can deliver over 100-1000 lux whereas the average light level in an office is around 300-500 lux. Even if the least light demanding species are used, artificial light is normally necessary indoor. A few species will stay fine at 900 lux, but a slightly increased level at some parts of the surface will broaden the variation of species that can be used. An artificially illuminated surface has shifting light levels, due to the fact that light reduces with the square of the distance from the light source. Some areas might have 3000 lux and others 900 lux. The plant design is made with this in mind, taking advantage of the higher levels for more demanding and interesting species.

Not only is artificial light necessary for the plants survival and growth, but it also makes the garden more beautiful as it brings out colors and textures of flowers and leaves. A suitable light source is the metal halide. It produces the essential wave-lengths that plants need and is an energy-saving and cost-efficient alternative.

Through an initial computer simulation, a study is made to calculate the required number and model of armatures. Finally, the levels are measured on location to fine-tune the setup.

V. MAINTENANCE
As the supply of the basic needs of plants (light, water and nutrients) are automated, not only does this make for unusually healthy plants - it highly reduces maintenance demand and makes the vertical garden possible to use on high buildings or other places where accessibility is limited.

The garden is designed so that the plants’ natural growth habit is given space, and for different species to have a dynamic co-habitat with adjacent species. During a year, the garden will profit from pruning approximately 1-2 times per year. All plants that are used are perennial, but as the years go by, a few will have to be replaced. These maintenance measures will ensure a long term lush and attractive garden.

VI. THE REALIZATION OF A PROJECT
The initial work includes studies of the local climate and the future location to see what site specific factors there are to consider. This will give the limits for what plants that may be used and is important information in the following survey of nursery stock from those nurseries, foreign or local, that can deliver to the location.

As the general conditions are defined, the design plan is developed in order to attain the desired character. It is during the design phase that the final selection of species is made, based on physical conditions, aesthetic preferences and availability.

At the construction site, the first step is to set up the supporting structure and make necessary preparations for the irrigation. When the technical system is completed with the mounting of the felt and the integrated drip-tube - the surface is ready for plantation. During the whole process a dialogue is kept with the architect and client in order to achieve the desired result.

Plants for Vertical Garden: In nature plants can be found growing on vertical surfaces like steep cliffs or tree trunk. Understanding this growing environment is important for a successful project that will flourish years to come.
VII. REQUIREMENTS
Vertical surfaces in nature are mostly soilless, creating well drained growing locations. Many plants thrive in such conditions — on rocks and cliff faces or branches and trunks of trees. These plants are called lithophytes and epiphytes. Many techniques imitate these conditions and allow a large variety of plants to be grown on vertical surfaces.

Choosing The Right Plants: Apart from aesthetic preferences and the plants ability to grow in a soilless, vertical location; the selection of plants is mainly decided by local climate and sun exposure. In an urban context these factors can be influenced by tall buildings that generate winds and irregular patterns of sun exposure. Studying local flora gives a good indication of which plants that might be used. Although wild species rarely are available in nurseries, it still tells about the hardiness zone and what related species that can work.

Classification of Vertical Gardens:

![Flowchart of classification of vertical garden.](image)

Active Living Walls: There is also some discussion involving "active" living walls. An active living wall actively pulls or forces air through the plants leaves, roots and growth medium of the wall and then into the building's HVAC system to be re circulated throughout the building. A problem with these systems is that building code still requires all the standard air filtration equipment that would have to be installed anyway, despite the living wall's installation. This means that active living walls do not improve air quality to the point that the installation of other air quality filtration systems can be removed to provide a cost-savings. Therefore, the added cost of design, planning and implementation of an active living wall is still in question. With further research and UL standards to support the air quality data from the living wall, building code may one day allow for our buildings to have their air filtered by plants.
Examples of Vertical Gardens

Figure 5: Active living wall.

Before

After

Figure 6. Transformation of concrete structure into vertical gardens.
Benefits of Vertical Garden: There are various benefits of vertical gardens or green wall. It can be sum up into 3 categories:

1. Public benefits
2. Private benefits
3. Design specific benefits

Public Benefits:

Aesthetic Improvements: Green walls can reclaim disregarded space by providing aesthetic stimulation where it would not otherwise be found. They can also serve to create privacy and a sense of enclosure while limiting the negative psychological effects associated with property demarcation.

Reduction of the Urban Heat Island Effect: The reintroduction of vegetation into urban environments promotes the occurrence of natural cooling processes, such as photosynthesis and evapo-transpiration. With strategic placement of green walls, plants can create enough turbulence to break vertical airflow, which slows and cools down the air.

Improved Exterior Air Quality: Green walls mitigate air pollution levels by lowering extreme summer temperatures through photosynthesis, trapping particulate matter, and capturing gases. The ability of green walls to provide thermal insulation for buildings means less demand on power, and as a result fewer polluting by-products are released into the air.

Local Job Creation: Green walls draw upon several disciplines for their design, installation and maintenance - such as landscape architects, architects, irrigation consultants, and more. Demand for a local supply of plant materials, blended growing media, greenhouse production, and fabrication of structural frames creates further business activity.

Private Benefits:

Improved Energy Efficiency: Green walls can reduce the temperature fluctuations at a wall’s surface from a range of 10-60°C (50-140°F) to one of 5-30°C (41-86°F), in turn limiting the movement of heat between building walls. They cause this reduction by:
- Trapping a layer of air within the plant mass.
- Reducing ambient temperature via evapotranspiration and shading.
- Creating a buffer against wind during winter months.

Green walls can help lower the air temperature around intake valves, which means HVAC units will require less energy to cool air before being circulated around a building.

Building Structure Protection: Temperature fluctuations over a building's lifetime can be damaging to organic construction materials in building facades. Green walls provide an additional layer of exterior insulation and thereby limit thermal fluctuations.

Green walls protect exterior finishes and masonry from UV radiation and rain. They can also increase the seal or air tightness of doors, windows, and cladding by decreasing the effect of wind pressure

Improved Indoor Air Quality: Most North Americans spend 80-90% of their time indoors and as a result are highly influenced by the effectiveness of interior air circulation systems. It has been estimated that problems associated with poor indoor air quality negatively affect workplace production by $60 billion per year in the United States.

Air that has been circulated throughout a building with a strategically placed green wall (such as near an air intake valve) will be cleaner than that on an uncovered building. The presence of vegetation indoors will have the same effect. These processes remove airborne pollutants such as toluene, ethyl benzene, xylene, and other volatile organic compounds.

Noise Reduction: The vegetated surface provided by strategic urban greenery such as green walls and roofs will block high frequency sounds, and when constructed with a substrate or growing medium support can also block low-frequency noises. For over 30 years plant life has been used to this end along freeways, arterials, and rail lines in North America and Europe.

Marketing Potential: Green buildings, products, and services now possess a competitive edge in the marketplace. Green walls are an easily identifiable symbol of the green building movement since they are visible and directly impact the amount of green space in urban centers.
Design Specific Benefits

Increased Biodiversity: Green walls can help mitigate loss of biodiversity due to the effects of urbanization, help sustain a variety of plants, pollinators and invertebrates, and provide habitat and nesting places for various bird species.

Improved Health and Well-Being: Buildings that feature and promote access to vegetation have been documented as having a greater positive human health impact than those without. Studies have shown that visual access to natural settings leads to increased job satisfaction and productivity and post-operative recovery rates in medical facilities.

Urban Agriculture: Green walls offer the opportunity for urban agriculture, such as vertical gardens of small fruits, vegetables, and herbs.

Onsite Wastewater Treatment: Several water-recycling systems can be applied to green walls. These systems pump grey water through a green wall, which then passes through filters, gravel, and marine plants. Treated water is then sent to a grey water holding tank for household or irrigation use or released into the public water treatment system. Some of these systems also collect storm water, which is filtered for household use or irrigation purposes.

VIII. CONCLUSION

Vertical gardening is basically about growing your plants upwards on vertical surfaces, be it on the wall of a home or a large facade of a building. As space is a constraint for many urban areas these days, having a vertical garden is certainly an option to still include some greenery in the house/building. Vertical gardening is more than just aesthetics; it can help to cool and insulate buildings, reducing the need and cost for air-conditioning. Growing plants in the building can also help to filter air particulates and improve air quality as well as add some humidity to centrally cooled offices at the same time. Vertical gardening requires little maintenance/trimming and mostly does not use soil. It also helps to save water by reducing the need for irrigation and watering. With vertical greenery, it also helps to soften the grey, hard and cold look of concrete especially in concrete urban jungles.

IX. ACKNOWLEDGEMENT

I would like to thank Prof. Meeta Verma, Prof. Sarah Khan, and Prof. Sakshi Gupta for their valuable discussions on green building concepts including the vertical garden technology.

X. REFERENCES

